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MINIMAL TRANSPORT NETWORKS WITH GENERAL
BOUNDARY CONDITIONS∗

SHYR-SHEA CHANG† AND MARCUS ROPER‡

Abstract. Vascular networks are used across the kingdoms of life to transport fluids, nutrients,
and cellular material. A popular unifying idea for understanding the diversity and constraints of
these networks is that the conduits making up the network are organized to optimize dissipation or
other functions within the network. However the general principles governing the optimal networks
remain unknown. In particular Durand [Phys. Rev. Lett., 98 (2007), 088701] showed that under
Neumann boundary conditions networks that minimize dissipation should be trees. Yet many real
transport networks, including capillary beds, are not simply connected, i.e., they are not trees.
Multi-connected (nontree) networks have previously been assumed to not minimize dissipation. Here
we show that if the boundary conditions on the flows within the network are enlarged to include
physically reasonable Neumann and Dirichlet boundary conditions (i.e., constraints on either flow or
pressure) then minimally dissipative networks need not be trees. To get to this result we show that
two methods of producing optimal networks, namely, enforcing constraints via Lagrange multipliers
or via penalty methods, are equivalent for tree networks.
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1. Introduction. Organisms across the kingdoms of life, including plants, ani-
mals, fungi, and water molds, rely on vascular networks to transport fluids, nutrients,
or cellular materials [15]. In vertebrate animals, a cardiovascular network transports
oxygenated blood from the heart to tissues throughout the body, and returns waste
gases to the heart and lungs. Distruption of this network even at the level of finest
vessels, including the systemic microvessel degradation associated with diabetes mel-
litus, or acute damage associated with traumatic brain injury, has long term irrepara-
ble health consequences. Accordingly parallel experimental efforts have targeted the
same goal of complete mapping of microvascular networks [3, 20, 9]. Yet interpreting
these data streams is held back by lack of information on the organizing principles
underlying the mapped networks.

One principle that has been used to dissect these networks is Murray’s law (Mur-
ray, 1926 [13]). Murray’s law states that if a network made up of hydraulic conduits
minimizes a total cost made up of the sum of the total dissipation and of the ma-
terial used to build the network then the radius of each conduit within the network
is proportional to the cube root of the flow that it carries. Murray’s law has been
verified by studies on plant and mammalian vascular networks ([17, 12, 18], but also
see [17] for a discussion of networks that do not apparently obey Murray’s law). This
result draws upon several assumptions that we will systematically analyze in this pa-
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1512 SHYR-SHEA CHANG AND MARCUS ROPER

per, so we present a brief derivation in section 2.1. A key part of this derivation is
that changing the radius of the vessel does not affect the flows passing through it. In
other words, flows and radii can be treated as independent variables. However the
flows within a network generally depend on the conductances within the network—so
changing radii of vessels within the network may alter the flows. Accordingly, it is
not obvious that when the feedback between vessel radius and flow is considered, i.e.,
when conduits are considered assembled within a network, Murray’s law will continue
to hold, or that a dissipation minimizing network configuration actually exists.

Durand [6] studied optimization of dissipation on networks in which multiple
sources were linked to multiple edges with arbitrarily complex network of edges and
vertices. A prior set of edges can be assigned (potentially including straight-line
paths between every pair of sources and or sinks), and one searches for the network
that uses some, but not necessarily all, of the prior edges, and that minimizes the
total dissipation for a prescribed material cost. This approach, in which material is
prescribed as a holonomic constraint and a minimally dissipative network is sought
consistent with this constraint, is not obviously equivalent, in the sense of producing
the same family of optimal networks, as Murray’s approach, which we may view as
a penalty function method for optimizing dissipation under material cost. But it has
been adopted in many recent works on optimal networks [6, 4, 8]. Durand showed
that any network that solves this optimization problem must be simply connected,
i.e., given any two vertices in the network there is at most one path connecting them,
so the network is either a tree or a forest. However the proof given in [6] only addresses
networks in which flow rates (i.e., Neumann boundary conditions) are imposed at the
vertices of the network, and leaves open networks where pressures can be imposed
(i.e., both Neumann and Dirichlet boundary conditions). We can quickly see that
for some combinations of boundary conditions the minimally dissipative network is
not simply connected, and we give an example in section 2.2. This example shows
that minimizing dissipation on a network with multiple pressure boundary conditions
produces a multiply connected, i.e., nontree network. The relevance of the example
network shown in Figure 1 to real biological transport network design may seem
unconvincing; however, even quite simple networks commonly used as models for
biological transport can exhibit nonequivalent optima under the different formulations
for material costs. To see how substantial the difference can be in section 2.3 we give
an example of a network and target function for which the constraint formulation
results in a different network from the penalty function formulation. Moreover, when
using the constraint formulation to optimize this network, key qualitative features of
the optimal network depend on the total material allocated to the network, a fact
that has apparently not received scrutiny.

In this paper we will discuss the consequences of boundary conditions on optimal
networks, as well as the effect of different formulations of material cost. We will focus
on networks minimizing transport costs, since these have recieved the most attention
to date [4, 8, 2]. We show that under the most general boundary conditions patholo-
gies associated with minimizing dissipation are overcome if one instead minimizes a
complementary dissipation that includes work done by pressure vertices [7, 10, 1]. A
network with minimal complementary dissipation is simply connected for all bound-
ary conditions, a property previously only proven for minimally dissipative networks
with Neumann boundary conditions. Networks optimizing complementary dissipation
resolve pathological networks like the one in Figure 1 by disconnecting pressure ver-
tices with the same pressure. The complementary dissipation reduces to dissipation
when all the pressure vertices have the same pressure, so previous theoretical results
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MINIMAL TRANSPORT NETWORKS 1513

for optimal networks are recovered. If at least one vertex with Neumann boundary
condition is present, minimally dissipative networks will disconnect all the Dirichlet
vertices from each other, so ultimately our results provide a formal proof that mini-
mally dissipative networks satisfy Murray’s law, are simply connected, and disconnect
pressure vertices under this narrower set of boundary conditions.

Throughout we model material costs via holonomic constraints, rather than using
Murray’s original approach of using penalty functions. The final leg of our argument
is to elucidate the conditions under which the two formulations are equivalent; that is,
they produce the same family of optimal networks as the cost or penalty parameters
are varied. In particular we show that the two formulations are equivalent if the
network flows are not affected by uniform rescaling of conductances, a property held
by any network in which all pressure vertices have identical pressures, including any
network that minimizes the complementary energy.

Taken together, our results comprehensively expose the effect of boundary condi-
tions, especially vertices with specified pressures, and of formulations of material cost
on minimally dissipative networks. It also suggests an energy function that incorpo-
rates the work done by pressure vertices that may be a more suitable target function
for optimization than dissipation.

2. Background.

2.1. Derivation of Murray’s law. Consider a cylindrical tube with radius r
and length ` with a flow f going through. By flow we mean that a volume f of
fluid (e.g., blood) passes through each cross section of the network in unit time. In
appropriate units, the energy cost of maintaining the vessel can be written as

(1) E = D + ar2` = f2R+ ar2`,

where D = f2R is the dissipation, R is the hydraulic resistance, and a is the energy
cost for maintaining unit volume of blood vessel. Under Hagen–Poiseuille’s law R =
8µ`
πr4 , where µ is the viscosity of the blood. Suppose r is tuned such that the energy
cost is minimized under fixed amount of inflow f . Then the derivative of E over r
should vanish, i.e.,

(2)
dE

dr
= 0⇒ −32f2µ`

πr5
+ 2ar` = 0⇒ f =

√
aπ

16µ
r3

and, hence, as claimed, r ∝ f
1
3 . Note, however, that this calculation assumes that

we can treat f as an independent variable—that is, changing the tube radius r does
not affect the flow through the vessel.

2.2. An example of a multiconnected minimal dissipative network. Con-
sider a square network made of 4 edges and 4 vertices, all of which have the pressure
specified. Vertices and edges are numbered as shown in Figure 1. In this network
flows can be determined locally, i.e., the flow on one link does not depend on flows on
others. Specifically,

(3) Q1 = κ1, Q2 = κ2, Q3 = κ3, Q4 = κ4.

The total dissipation within the network is

(4) D =

4∑
i=1

κi.
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1514 SHYR-SHEA CHANG AND MARCUS ROPER

Fig. 1. A nontree minimal dissipation network.

We follow Durand [6] by specifying the total material available to build the network.
Since all edges have the same length this constraint takes the form

∑
i r

2
i = const,

where ri is the radius of edge i. Now, since by the Hagen–Poiseuille law κi ∝ r4i , we
may equivalently write the constraint in the form

(5) K
1
2 =

4∑
i=1

κ
1
2
i

for some K > 0. To minimize dissipation under the material constraint we write
the dissipation in the network and add a Lagrange multiplier to enforce the material
constraint:

(6) Θ =

4∑
i=1

κi + λ

(
4∑
i=1

κ
1
2
i −K

1
2

)
.

We find the optimal conductances within the network by setting equal to 0 each of
the partial derivatives of Θ with respect to the variables {κi} in the form

(7) 0 =
∂Θ

∂κi
= 1 +

λ

2
κ
− 1

2
i ⇒ κi =

λ2

4
∀1 ≤ i ≤ 4.

The Lagrange multiplier λ can be determined from the material constraint

(8) K
1
2 =

4∑
i=1

κ
1
2
i = 2λ⇒ λ =

K
1
2

2
.

We have therefore identified a candidate local extremum with κi > 0 ∀1 ≤ i ≤ 4,
but this local extremum might not be the global minimizer. The set on which we

need to minimize the dissipation, i.e., {(κ1, κ2, κ3, κ4)|
∑4
i=1 κ

1
2
i = K

1
2 }, is compact,

so the global minimum must be attained either at the local extremum, or on one
of the set boundaries κi = 0 for some 1 ≤ i ≤ 4. To analyze the dissipation on
domain boundaries we can simply assume that n ≤ 4 conductances are positive and
recalculate λ in the same fashion:

(9) K
1
2 =

4∑
i=1

κ
1
2
i =

n

2
λ⇒ λ =

2K
1
2

n
.
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MINIMAL TRANSPORT NETWORKS 1515

Fig. 2. The different formulations of imposing material as constraint or penalty function affect
the optimal network for the same target function. (A) A network in which a vertex with prescribed
inflow, F3 = 1, is connected to two vertices on which pressures are prescribed. (B) The asymmetry
of the network increases as the total prescribed material K increases, as predicted by the asymptotic
analysis in section 2.3.

Now we can calculate the dissipation and see which n gives the lowest dissipation (let
K ⊆ 1, 2, 3, 4 be the set of positive conductances so |K| = n):

(10) D =
∑
i∈K

1

4
λ2 =

∑
i∈K

K

n2
=
K

n
,

so n = 4 indeed results in a minimal dissipation network consisting of a single loop
through all four vertices. Note additionally that, on this prior network, treating ma-
terial costs as a holonomic constraint or penalty function does not produce equivalent
results. Indeed the sum of dissipation and material costs is trivially minimized in a
network in which all edges have been eliminated.

2.3. Formulation of material costs affects the existence of an optimal
network. We demonstrate that the formulation of material costs affects the existence
of an optimal network, by studying an example network. Consider a simple network
comprising two edges (Figure 2(A)) and minimizing

(11) f =

2∑
i=1

(
Qi −

1

2

)2

.

This target function is inspired by our own studies of flow in microvascular networks,
which have shown that uniform partitioning of flows in microvessels is prioritized over
transport costs [5]. By minimizing f we are uniformizing the flows going through the
edges to the pressure vertices. We compare the solutions from following either of our
optimization approaches. First we treat the material cost as a penalty function, i.e.,
follow Murray’s formulation, and minimize

(12) Θ =

2∑
i=1

(
Qi −

1

2

)2

+ a

2∑
i=1

κ
1
2
i .

The pressure at the flow vertex is determined by Kirchhoff’s first law, which states
that the flows along the two edges must sum to the inflow at vertex 3, i.e.,

(13) p3κ1 + (p3 − 1)κ2 = 1⇒ p3 =
1 + κ2
κ1 + κ2

.
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1516 SHYR-SHEA CHANG AND MARCUS ROPER

The total cost function Θ can be rewritten, after p3 is solved by (13), as

(14) Θ =

(
(1 + κ2)κ1
κ1 + κ2

− 1

2

)2

+

(
(1− κ1)κ2
κ1 + κ2

− 1

2

)2

+ a
(
κ

1
2
1 + κ

1
2
2

)
.

We will show that Θ does not have a minimizer. First notice (κ1, κ2) = (0, 0) is not
allowed since p3 cannot be determined in this case. The minimum value of Θ is zero,
and (κ1, κ2) = (0, 0) is the only configuration of the network that might achieve this

value since otherwise κ
1
2
1 +κ

1
2
2 > 0. It suffices to show that we can find networks with

Θ > 0 arbitrarily close to zero. If we let κ1 = κ2 = ε > 0 then

(15) Θ =
ε2

2
+ 2aε

1
2 → 0 as ε→ 0

and we showed that Θ does not have a minimizer. On the other hand if we impose
the total material as a constraint we have

(16) Θ =

(
(1 + κ2)κ1
κ1 + κ2

− 1

2

)2

+

(
(1− κ1)κ2
κ1 + κ2

− 1

2

)2

,

where

(17) κ
1
2
1 + κ

1
2
2 = K

1
2

with a predetermined total material K. A minimum will happen if Q1 = Q2 = 1
2 with

the material constraint satisfied, so we may as well start from the equation

(18)
κ1 + κ1κ2
κ1 + κ2

=
1

2
⇒ κ1 =

κ2
1 + 2κ2

(the other equation is redundant since Q1 + Q2 = 1). The material constraint then
reads

(19)
[
1 + (1 + 2κ2)

1
2

] κ
1
2
2

(1 + 2κ2)
1
2

= K
1
2 .

This equation does not admit an analytical solution, but since the left-hand side is
monotonically increasing with κ2 and can take any value between 0 and ∞, it can be
solved for any finite K > 0. In particular, asymptotic solutions can be obtained as
K → 0+ and as K →∞. When K � 1 we have κ2 ≤ K � 1 so

(20) K
1
2 =

[
1 + (1 + 2κ2)

1
2

] κ
1
2
2

(1 + 2κ2)
1
2

∼ 2κ
1
2
2 ⇒ κ1 = κ2 =

K

4
.

In the case of K � 1 if we assume κ2 � 1 we can obtain

(21) K
1
2 =

[
1 + (1 + 2κ2)

1
2

] κ
1
2
2

(1 + 2κ2)
1
2

∼ κ
1
2
2 ⇒ κ2 ∼ K.

Therefore the increase in total material K increases the network asymmetry κ2

κ1
, as

also suggested by numerical results (Figure 2(B)).
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MINIMAL TRANSPORT NETWORKS 1517

Fig. 3. A network diagram showing Dirichlet (pressure) vertices P and Neumann (flow) vertices
F , along with vertices where no boundary condition is imposed.

3. Notation. In this work we consider a set of vertices k = 1, . . . , V that connect
to each other by vessels or edges. We indicate that vertices are neighbors in the
network by writing 〈k, l〉 = 1 if vertices k, l are linked by an edge and 〈k, l〉 = 0
otherwise. This relation between vertices is symmetric, in the sense that 〈k, l〉 = 〈l, k〉.
If 〈k, l〉 = 1 a nonnegative conductance κkl and a flow Qkl are associated with the
edge, with κkl = κlk and Qkl = −Qlk. We model flows within hydraulic networks
by assuming that a pressure pk can be assigned to each vertex k and there is a
linear relation between flow and pressure difference, i.e., Qkl = (pk − pl)κkl. At every
Neumann vertex the conservation of mass has to hold, i.e.,

∑
l : 〈k,l〉=1Qkl = qk, where

qk is the flow into the network at vertex k. We divide the vertices of the network into
two classes: Neumann vertices where flow into the network is known, and Dirichlet
vertices at which pressure is prescribed. Vertices that are not connected to external
fluid sources, sinks, or reservoirs are typically of Neumann type, with inflow qk = 0
(Figure 3). Let P denote the set of pressure (or Dirichlet) vertices and F the set
of flow (or Neumann) vertices with nonzero inflow (we require P ∩ F = φ since,
when combined with the compatibility conditions discussed below, this condition is
sufficient for the flows to be unique. In the case P ∩ F 6= φ neither existence nor
uniqueness of flows can be guaranteed). For definiteness we say k /∈ P ∪ F if no
boundary condition is imposed, i.e.,

∑
l : 〈k,l〉=1Qkl = 0. A Kirchhoff flow is defined

as the flow Qkl = (pk − pl)κkl ∀〈k, l〉 = 1, where the pressures satisfy

(22)


∑
l : 〈k,l〉=1(pk − pl)κkl = 0, k /∈ P ∪ F ,

pk = p̄k, k ∈ P,∑
l : 〈k,l〉=1(pk − pl)κkl − qk = 0, k ∈ F , qk 6= 0.

It is well known that connected networks with P 6= φ have uniquely determined
pressures and, therefore, Kirchhoff flow [11] (connected networks are networks where
∀1 ≤ k, l ≤ V , we can devise a path from k to l; that is, ∃k1, k2, . . . , kn s.t. 〈k, k1〉 =
〈ki, ki+1〉 = 〈kn, l〉 = 1 ∀1 ≤ i ≤ n − 1 and κkk1 , κkiki+1

, κknl > 0 ∀1 ≤ i ≤ n − 1).
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1518 SHYR-SHEA CHANG AND MARCUS ROPER

In the case P = φ the Kirchhoff flow is uniquely determined as long as
∑
k∈F qk = 0,

and pressures are determined up to an additive constant. If the condition on total
inflow is violated there is no solution for pk’s and the pressures are ill-defined. This
result is quite important for developing intuition about the role of Dirichlet vertices
in networks so we give a proof in the appendix. On the other hand, if the network
is not connected then it consists of finitely many connected components, and each
component would have to satisfy the condition for the Kirchhoff flow to be uniquely
determined. We define a physical network to be a network whose conductances κkl
and pressure conditions admit a unique Kirchhoff flow solution.

4. Results. In this section we state the main results of this paper, and describe
several properties of physical networks that globally minimize the dissipation and
the complementary dissipation, a concept analogous to the notion of complementary
energy for externally loaded elastic body. These results will be proven in sections
5–10.

Definition 1. The dissipation function given flows Qkl and conductances κkl for
〈k, l〉 = 1 is defined by

(23) D =
∑

k>l,〈k,l〉=1

Q2
kl

κkl
.

Definition 2. The complementary dissipation of a network given flows Qkl and
conductances κkl for 〈k, l〉 = 1 is defined by

(24) f =
∑

k>l,〈k,l〉=1

Q2
kl

κkl
− 2

∑
k∈P

pk
∑

l : 〈k,l〉=1

Qkl.

We call f the complementary dissipation because it resembles the complementary
energy defined in linear elasticity which allows the displacement field within an ex-
ternally loaded elastic body to be calculated via minimization of a function [7, 10, 1].
Notably this function, the complementary energy, is defined to be equal to the stored
internal elastic energy minus the work done by any external traction, which is simi-
lar to our expression (rate of dissipation minus twice the rate of working of external
tractions). We introduce the material constraint as

(25) K =
∑

k>l,〈k,l〉=1

κ
1
2

kldkl.

Here dkl = `
3
2

kl, where `kl is the length of link kl in the hydraulic network. The dkl
can be any set of positive weights for generality. A fundamental question is whether
a global minimizer of dissipation (23) or complementary dissipation (24) exists under
material constraint or penalty:

Proposition 3. Suppose the network topology and boundary conditions are phys-
ical, i.e., κkl > 0 ∀〈k, l〉 = 1 results in a physical network. Then there exists a physical
network that globally minimizes dissipation (23) or complementary dissipation (24)
under material constraint (25). In addition there exists a physical network that min-
imizes dissipation (23) under material penalty, i.e., minimizes

(26) Θ =
∑

k>l,〈k,l〉=1

Q2
kl

κkl
+ a

∑
k>l,〈k,l〉=1

κ
1
2

kldkl

under no constraint.
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Observe that the complementary dissipation (24) with material penalty might not
have a global minimizer. Consider a simple network made up of two pressure vertices
with prescribed pressures p = 1, 0 connected by an edge with conductance κ. Then
the complementary dissipation with material penalty is −κ + aκ

1
2 d12, which goes to

−∞ as κ → ∞. Thus a global minimizer does not exist in this example. Now we
define Murray’s law.

Definition 4. A physical network is said to satisfy Murray’s law if there is a
constant a > 0 such that the following relation between Kirchhoff flow Qkl and con-
ductance κkl holds ∀〈k, l〉 = 1:

(27) κkl = a
|Qkl|

4
3

d
2
3

kl

.

If flows obey the Hagen–Poiseuille law (so that κkl ∝ r4kl, where rkl is the radius
of edge kl), then (27) implies that |Qkl| ∝ r3kl. Our first result reframes Murray’s
law with respect to global minimizers.

Theorem 5. A physical network that globally minimizes the complementary dis-
sipation (24) under material constraint (25) satisfies the Murray’s law.

Our second and third results establish properties previously attributed to minimal
dissipative networks [6] but now allowing for both Neumann and Dirichlet boundary
conditions. Let a path between vertices k, l be a set of vertices k = k1, k2, . . . , kn = l
such that no vertex is listed more than once and 〈ki, ki+1〉 = 1, κkiki+1 > 0 ∀1 ≤ i ≤
n− 1.

Theorem 6. In a physical network that globally minimizes the complementary
dissipation (24) under material constraint (25) there is exactly one path between any
pair of points, except for the case this network has no flow in it, i.e., Qkl = 0 ∀〈k, l〉 =
1.

Theorem 7. A physical network that globally minimizes the complementary dis-
sipation (24) under material constraint (25) has no path connecting 2 pressure vertices
with the same prescribed pressure, except the case that the network has no flow in it.

From these results we can rederive properties of minimal dissipative networks for
boundary conditions considered by Durand [6].

Corollary 8. A physical network that globally minimizes dissipation (23) under
the material constraint (25) satisfies Murray’s law, has no loops, and has no paths
connecting two pressure vertices if all the pressure vertices have the same specified
pressure

Proof. It suffices to show that the complementary dissipation (24) reduces to
dissipation (23). Since Kirchhoff flow remains the same up to an additive constant on
all pressures we can without loss of generality let p0 = 0. Then f = D and the results
carry through.

While it is possible that two pressure vertices with different prescribed pressures
connect in networks with minimal complementary dissipation, it does not happen
for minimal dissipative networks that have at least one vertex with a flow boundary
condition.

Proposition 9. In a physical network that globally minimizes the dissipation
(23) under material constraint (25) with F 6= φ, no pair of pressure vertices are
connected by a path.
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1520 SHYR-SHEA CHANG AND MARCUS ROPER

This along with Corollary 8 establishes a general result on minimally dissipative
networks

Corollary 10. A physical network that globally minimizes the dissipation (23)
under material constraint (25) with F 6= φ satisfies Murray’s law (27), has no loops
in the sense of Theorem 6, and has no paths connecting two pressure vertices in the
sense of Proposition 9.

Proof. Suppose we have a physical network that globally minimizes dissipation
(23) with |P| = n and the connected components (where two vertices can be connected
only by links with positive conductance) of the network are labeled G1, G2, . . . , Gm.
From Proposition 9 we know that two pressure vertices cannot connect, so m ≥ n and
each subgraph includes at most one pressure vertex, i.e., |Gi ∩ P| ≤ 1 ∀1 ≤ i ≤ m.
Now we look at a specific subnetwork Gi. The subnetwork satisfies the assumptions
of Corollary 8, so it has to satisfy Murray’s law (27) and also contains no loops, or
else there is no flow in Gi. Since this argument holds for all subnetworks the whole
network satisfies Murray’s law and contains no loops.

Throughout this work we follow recent work [4, 8] by imposing material cost as
a constraint rather than following Murray’s approach of imposing it as a penalty
function. Here we discuss the conditions under which these different formulations are
equivalent for minimally dissipative networks.

Proposition 11. Suppose the flows in each minimally dissipative network under
material constraint (25) are invariant when conductances are uniformly rescaled, i.e.,
the network with κ′kl = βκkl, β > 0, has the same flows as that in the original net-
work. Then there is a bijection K(a) from (0,∞) to (0,∞) such that every minimally
dissipative network with material constraint K is a minimally dissipative network with
material penalty under some coefficient a (26) and vice versa.

For networks with at least one flow boundary condition we know from Corollary 10
that all the pressure vertices disconnect and, hence, the flows in minimally dissipative
networks under material constraint are invariant when conductances are uniformly
rescaled. Thus, we have the following.

Corollary 12. If the network has at least one flow vertex, i.e., F 6= φ, then
the minimal dissipation problem under material constraint (25) and material penalty
(26) are equivalent in the sense of Proposition 11.

5. Proof of Proposition 3.

Proof. To begin consider the dissipation function (23) under material constraint
(25). Suppose there are E edges, then the intersection of {κi ≥ 0} and the material
constraint surfaces forms a compact set A in RE . For each physical network the flow is
obtained by inverting an invertible matrix with components continuously dependent
on the conductances so the dissipation is continuous in the conductances. Dissipation
is finite at each physical network since κkl = 0 ⇒ Qkl = 0. However not all the
networks in this set are physical, specifically when a subnetwork with unbalanced flow
boundary conditions is separated out, and we need to exclude nonphysical networks
but keep the set compact. By assumption κkl > 0 ∀〈k, l〉 = 1 results in a physical
network, so a nonphysical network must have a set of edges kili with κkili = 0 for
i = 1, 2, . . . , n. It suffices to show that physical networks with κk1l1 , . . . , κknln <
ε have dissipation uniformly converging to infinity as ε → 0+, so we can exclude
this set without excluding a possible global minimum. If κk1l1 , . . . , κknln = 0 gives
a nonphysical network there will be a connected component C connected by kl /∈
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{k1l1, . . . , knln} and with
∑
i∈C∩F qi 6= 0 but P ∩ C = φ. Without loss of generality

let qtot =
∑
i∈C∩F qi > 0 and assume k1l1, . . . , kmlm with m ≤ n connect C with the

rest of the network, i.e., ki ∈ C and li /∈ C ∀1 ≤ i ≤ m. Then the unbalanced flow in
C must flow out through k1l1, . . . , kmlm so

(28)

m∑
i=1

Qkili = qtot ⇒ ∃1 ≤ j ≤ m s.t. Qkj lj ≥
qtot
m

.

Then

(29) D =
∑

k<l,〈k,l〉=1

Q2
kl

κkl
≥
Q2
kj lj

κkj lj
≥ q2tot
m2ε

≥ q2tot
n2ε

.

Since qtot is independent of ε > 0 the dissipation of physical networks in the set
{κkili < ε|1 ≤ i ≤ n} goes to infinity uniformly as ε→ 0+. Now for each nonphysical
network we can identify all the edges with zero conductance and create this set, with

ε > 0 chosen such that ε < K2

(
∑

k>l,〈k,l〉=1 dkl)2
, where K is the prescribed material cost,

and all the physical networks within this set have dissipation greater than that of the

uniform conductance network, i.e., κi = K2

(
∑

k>l,〈k,l〉=1 dkl)2
∀1 ≤ i ≤ E. Then if we

exclude this set of networks from A we will obtain a nonempty set (since the uniform
conductance network is in the set) and we will not exclude the global minimum (since
the uniform conductance network has lower dissipation than all the physical networks
in the excluded set). Now we repeat this procedure for all k1l1, . . . , knln if zero
conductance on these edges produces a nonphysical network. Since there are only
finitely many edge subsets and each operation produces a compact set we know the
remaining set is still compact. Then a globally minimally dissipative network exists
since a continuous function always achieves its global minimum on compact sets. The
proof for dissipation with material penalty (26) follows along the same lines except

that now A is defined by {
∑
k<l,〈k,l〉=1 κ

1
2

kldkl ≤M |κi ≥ 0} and M chosen to be larger

than the dissipation with material penalty (26) of the uniform conductance network.
Finally we consider the complementary dissipation (24) with material constraint

(25). The proof is similar except that now we need to establish a uniform upper
bound of |

∑
k∈P pk

∑
l : 〈k,l〉=1Qkl| for all physical networks in A. Then since the

pressure work term is continuous with the conductance and we can exclude nonphysi-
cal networks once we have this bound we can prove the existence of a global minimizer
as above. Since the flows depend linearly on the boundary conditions we can write

Qkl = Q
(f)
kl + Q

(p)
kl , where {Q(f)

kl } is obtained by setting all pressure vertices to have

zero pressure and keeping all the flow boundary conditions and {Q(p)
kl } by setting all

the flow vertices to have zero flow (i.e., remove the flow boundary condition on all
flow vertices) and keeping all the pressure boundary conditions. It suffices to bound

the pressure work term in these flows separately. In the network with Q
(p)
kl notice that

the maximum principle applies, i.e., if we let p̄ = maxpi,i∈P , p = minpi,i∈P we have

(30) p ≤ pi ≤ p̄

for all vertices, i, that are connected to a pressure vertex (let the set of i /∈ P and i
connected to a pressure vertex be C). This is obvious if i ∈ P. If i ∈ C Kirchhoff’s
first law at vertex i may be rewritten as

(31) pi =

∑
j : 〈i,j〉=1 pjκij∑
j : 〈i,j〉=1 κij
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1522 SHYR-SHEA CHANG AND MARCUS ROPER

(
∑
j : 〈i,j〉=1 κij > 0 since i connects to a pressure vertex and hence must connect to

at least one adjacent vertex). Suppose for contradiction that ∃pi0 < p with i0 ∈ C.
Then we can without loss of generality have pi0 ≤ pj ∀j ∈ C, and for (31) to hold we
must have pj = pi0 ∀κji0 > 0. By assumption i0 connects to a pressure vertex k ∈ P
so pk = pi0 < p, a contradiction. Similarly we can prove that pi ≤ p̄ ∀i ∈ C. Thus if
we let the maximum degree of all the vertices be d we have

(32)

∣∣∣∣∣∣
∑
k∈P

pk
∑

l : 〈k,l〉=1

Q
(p)
kl

∣∣∣∣∣∣ ≤ |P|max{|p̄|, |p|}(p̄− p)d K2

min{dkl}2

which is a uniform bound for all the physical networks satisfying the material con-

straint (25). Now we consider the pressure work term with Q
(f)
kl . Without loss of

generality we can assume |F| = 1 since we can split any flow boundary condition into

the sum of boundaries {Q(f,1)
kl }, . . . , {Q

(f,|F|)
kl }, where {Q(f,i)

kl } is the flow in which only
the ith flow boundary condition is applied, and for concreteness we let qif < 0, where

if denotes the only flow vertex in the network. Now we focus on a specific {Q(f,i)
kl }

and abbreviate it as {Qkl}. We claim that 0 ≤
∑
l : 〈k,l〉=1Qkl ≤ −qif ∀k ∈ P.

Suppose for contradiction that
∑
l : 〈k0,l〉=1Qk0l < 0 for a k0 ∈ P. Then ∃k1 such

that 〈k1, k0〉 = 1 and pk1 > pk0 by the assumption. If k1 ∈ P we have a contra-
diction since pk1 = pk0 = 0, so k1 /∈ P ∪ F or k1 ∈ F . In either case we have∑
l 6=k0 : 〈k1,l〉=1Qk1l = qk1 − Qk1k0 , where qk1 = qif if k1 ∈ F and is zero otherwise.

Thus the left-hand side sums to a nonpositive number so we can find k2 such that
〈k2, k1〉 = 1 and pk2 > pk1 . Following this procedure we can find distinct k0, k1, . . . , kn
such that pki > pki−1

∀1 ≤ i ≤ n (if any two of the vertices are the same they
would have the same pressure). Since n > 0 is arbitrary we can let n = V , the
number of vertices, so one of ki must belong to P, a contradiction. The statement∑
l : 〈k,l〉=1Qkl ≤ −qif comes from the fact

(33)
∑
k∈P

 ∑
l : 〈k,l〉=1

Qkl

 = −qif

so if ∃k0 ∈ P such that
∑
l : 〈k0,l〉=1Qk0l > −qif there must be a k′0 ∈ P such that∑

l : 〈k′0,l〉=1Qk′0l < 0, a contradiction. Similar estimates for qif > 0 can be obtained

in the same manner. With the estimates on the inflow into pressure vertices we have

(34)

∣∣∣∣∣∣
∑
k∈P

pk
∑

l : 〈k,l〉=1

Q
(f)
kl

∣∣∣∣∣∣ ≤ |P|max{|p̄|, |p|}|qif |.

With these estimates we established an upper bound for the pressure work term and
hence the global minimizer for the complementary dissipation (24) under material
constraint (25).

6. Proof of Theorem 5.

Proof. Consider a physical network that does not satisfy Murray’s law, and we
will show that this is not a global minimizer of complementary dissipation (24) under
material constraint (25). Suppose our network has flows and conductances Q̃kl, κ̃kl,
and assume for now that Q̃kl 6= 0 ∀〈k, l〉 = 1. Now define κkl to be the conductances
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that satisfy Murray’s law (27) and the material constraint (25) based on the fluxes in
our original network, i.e.,

(35) κkl = a
|Q̃kl|

4
3

d
2
3

kl

∀〈k, l〉 = 1, K =
∑

k>l,〈k,l〉=1

κ
1
2

kldkl,

where a > 0 is uniquely determined by the material constraint. We show that this
comparative network has strictly smaller complementary dissipation (24), i.e.,

(36)
∑

k>l,〈k,l〉=1

Q̃2
kl

κkl
− 2

∑
k∈P

pk
∑

l : 〈k,l〉=1

Q̃kl <
∑

k>l,〈k,l〉=1

Q̃2
kl

κ̃kl
− 2

∑
k∈P

pk
∑

l : 〈k,l〉=1

Q̃kl.

We show this inequality by proving that the conductances satisfying Murray’s law
are the global minimizer of complementary dissipation (24) when flows Q̃kl are held
constant and the material constraint (25) is imposed. Consider the dissipation with a
Lagrange multiplier imposing material constraint (since the pressure work term does
not change when Q̃kl are held fixed)

(37) Θ =
∑

k>l,〈k,l〉=1

Q̃2
kl

κkl
+ λ

 ∑
k>l,〈k,l〉=1

κ
1
2

kldkl −K

 .

First we find the stationary points

(38) 0 =
∂Θ

∂κkl
= − Q̃

2
kl

κ2kl
+
λ

2
κ
− 1

2

kl dkl ⇒ κkl = 2
2
3
|Q̃kl|

4
3

(λdkl)
2
3

∀〈k, l〉 = 1

which is Murray’s law when the Hagen–Poiseuille’s law is applied. Now λ can be
solved for by plugging (38) back into the material constraint (25). Since the ma-
terial constraint (25) along with κkl ≥ 0 ∀〈k, l〉 = 1 forms a compact set this is
the unique global minimum so long as no minima occur on the boundaries, i.e.,
there is no local minimum for which ∃〈k, l〉 = 1 s.t. κkl = 0. However since
Q̃kl 6= 0 ∀〈k, l〉 = 1 any κkl = 0 will result in f = ∞ and thus global mini-
mizers cannot happen on boundaries. Since the set of conductances that satisfy
Murray’s law on the material constraint surface is the only stationary point in the
interior, and we have dispensed with global minima on the boundary, it must be
the unique global minimizer, and the inequality (36) holds. Now to finalize our
proof we remove the assumption that Q̃kl 6= 0 ∀〈k, l〉 = 1. Then we need to
show that the new conductances κkl along with original boundary conditions yield
a physical network under the assumption that κ̃kl with boundary conditions gives
a physical network, and that the conductances κkl that satisfy Murray’s law are
still the unique global minimizer. The first aspect is trivial in the case Q̃kl 6=
0 ∀〈k, l〉 = 1 since this condition implies that κ̃kl, κkl > 0 ∀〈k, l〉 = 1. How-
ever Q̃kl = 0 does not imply κ̃kl = 0 while κkl will be zero, and the concern is
that applying (35) will produce a set of disconnected networks that are not phys-
ical networks. Consider a connected subnetwork of {κ̃kl} containing some edges
with zero flows Q̃k1l1 = Q̃k2l2 = · · · = Q̃knln = 0 (the statement that a network
is a physical network is equivalent to all its connected subnetworks being physi-
cal networks). Assume for contradiction that a connected component of this sub-
network Gs is not a physical network with conductances κkl. By the nonphysical
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network assumption we have Gs ∩ P = φ and
∑
k∈Gs∩F qk 6= 0. However since

Q̃kili = 0 ∀1 ≤ i ≤ n we have
∑
k∈Gs

∑
l : 〈k,l〉=1,l∈Gs

Q̃kl =
∑
k∈Gs

∑
l : 〈k,l〉=1 Q̃kl =∑

k∈Gs∩F qk 6= 0, contradicting the fact that there is a well-defined pressure p̃k

on Gs since
∑
k∈Gs

∑
l : 〈k,l〉=1,l∈Gs

Q̃kl =
∑
k∈Gs

∑
l : 〈k,l〉=1,l∈Gs

(p̃k − p̃l)κ̃kl =∑
k,l∈Gs,k>l,〈k,l〉=1(p̃k − p̃l)κ̃kl + (p̃l − p̃k)κ̃kl = 0.

Now we address the second aspect, namely, that the set of conductances κkl that
satisfy Murray’s law are still the unique global minimizer of dissipation under fixed
flow Q̃kl. Let us enumerate all the links with zero flows by k1l1, . . . , knln. We have n <
E, where E is the number of edges since if all the flows are zero the network will already
satisfy Murray’s law (27) with a = 0. It suffices to show that any network with κkili >
0 for some i ∈ {1, . . . , n} cannot be a global minimizer. Then we can restrict ourselves
on the surface κk1l1 = · · · = κknln = 0 and do the same calculation (when Q̃kl =
0 ∀〈k, l〉 = 1 the network already satisfies the Murray’s law with the constant a = 0,
so this case can be excluded). However the result is immediate in this case because if
we set κkili = 0 ∀i ∈ I and scale the rest of the conductances up by a multiplicative
constant we will strictly reduce the dissipation, so it cannot be a global minimizer.

Now we fix the conductances κkl and change the flows in order to satisfy Kirch-
hoff’s laws. We claim that among all the flows that satisfy conservation of mass and
flow boundary conditions, i.e.,

∑
l,〈k,l〉=1Qkl = 0 if k /∈ P∪F and

∑
l,〈k,l〉=1Qkl−qk =

0 if k ∈ F the Kirchhoff flow minimizes function (24) with κkl fixed. Then since the
original flow Q̃kl lies in this category we can show

(39)
∑

k>l,〈k,l〉=1

Q2
kl

κkl
− 2

∑
k∈P

pk
∑

l : 〈k,l〉=1

Qkl ≤
∑

k>l,〈k,l〉=1

Q̃2
kl

κkl
− 2

∑
k∈P

pk
∑

l : 〈k,l〉=1

Q̃kl

which finishes the proof. To see this we can impose the Lagrange multipliers for
conservation of mass and flow boundary conditions on function (24):

(40) Θ =
∑

k>l,〈k,l〉=1

Q2
kl

κkl
− 2

∑
k∈P

pk
∑

l,〈k,l〉=1

Qkl −
∑
k/∈P

λk

 ∑
l,〈k,l〉=1

Qkl − qk

 ,

where λk are Lagrange multipliers (for convenience, we set qk = 0 if k /∈ P ∪ F). To
minimize this function we take derivatives and set them to zero:

(41) 0 =
∂Θ

∂Qkl
=

2Qkl
κkl

− (λk − λl)

and we define λk = 2pk if k ∈ P. If we apply conservation of flux and flow boundary
condition on k /∈ P in terms of λk’s, i.e., substituting Qkl’s by λk’s using (41), and
impose λk = 2pk for k ∈ P, then the λk’s satisfy the exact same equations as the pres-
sure under Kirchhoff’s laws. We know from section 3 that if P 6= φ then the pressure
has a unique solution; otherwise, the pressure is determined up to an additive con-
stant, which has no effect on the flows. Therefore the flows Qkl’s always have a unique
solution. To show that Kirchhoff flow is a global minimum of the complementary dis-
sipation (24) notice that now the conservation of mass and flow boundary condition
constraints might not give us a compact set, so there is no boundary. However f has
quadratic growth in flow through any link, so we can find M > 0 s.t. f > 2b whenever
|Qkl| > M for any 〈k, l〉 = 1, where b is the value of the complementary dissipation
f for Kirchhoff flow. Then since f has a global minimum in the compact set |Qkl| ≤
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M 〈k, l〉 = 1 and it cannot be on the boundary it will have to be the Kirchhoff flow,
which establishes that the Kirchhoff flow is the unique global minimizer of the com-
plementary dissipation (24) given fixed conductances κkl, which finishes the proof.

7. Proof for Theorem 6.

Proof. Consider a physical network that contains a loop, e, with at least 3 points,
i.e., k1, . . . , kn with 〈ki, ki+1〉 = 1, κkiki+1 > 0 ∀1 ≤ i ≤ n (we set kn+1 = k1) and
n ≥ 3, and let C = {(k1, k2), . . . , (kn−1, kn), (kn, k1)} be the set of ordered pairs
denoting all the edges in the loop. Without loss of generality we can assume that
the loop does not intersect itself, i.e., |{k1, . . . , kn}| = n; otherwise, we can choose a
non-self-intersecting subloop from it and proceed with the subloop. First we assume
that Qk1k2 , . . . , Qknk1 are not all the same. We know from section 6 that adjusting
conductances according to Murray’s law under material constraint will decrease the
dissipation without changing the pressure work term in the complementary dissipation
function (24) and that the resulting network will remain physical, so we can decrease
the complementary dissipation by adjusting the conductances on the loop according to
Murray’s law with the material on the loop fixed. Therefore without loss of generality

we can assume that ∃a > 0 s.t. κ̃kiki+1
= a

|Q̃kiki+1
|
4
3

d
2
3
kl

∀1 ≤ i ≤ n. Now we consider

adding in a loop current Q, that is, we add the same current Q to each edge in the
loop, and adjust the conductances by Murray’s law under material constraint, i.e., set

(42) Qkl = Q̃kl +Q and κkl = µ
Q

4
3

kl

d
2
3

kl

∀(k, l) ∈ C,

where

(43) µ =
K2

loop

(
∑

(k,l)∈C Q
2
3

kld
2
3

kl)
2
, Kloop

.
=

∑
(k,l)∈C

κ̃
1
2

kldkl

(we say (k, l) ∈ C if the ordered pair (k, l) = (kiki+1) for some 1 ≤ i ≤ n). Notice
that for any Q ∈ R the new flows Qkl, (k, l) ∈ C along with the original flows outside
of the loop Q̃kl, 〈k, l〉 = 1, (k, l), (l, k) /∈ C still satisfy conservation of mass and flow
boundary conditions since the addition of Q does not change the total flow into any
of the vertices. If {k1, . . . , kn} ∩ P = 0 then changing the flow will only change the
dissipation on the loop, and we only need to consider

(44) Dloop
.
=

∑
(k,l)∈C

Q2
kl

κkl
.

If this is not the case suppose that our network contains a certain number of pres-
sure vertices: kn1

, . . . , knm
∈ P with m ≤ n. For any knj

if we restrict the sum∑
l : 〈knj

,l〉Qknj
l to edges in the loop, then it can be written as Qknj

,knj
+1+Qknj

,knj
−1

(recall that we assumed the loop has no self-interception). Since Qkl = Q̃kl + Q we
will have Qknj

,knj
+1+Qknj

,knj
−1 = Q̃knj

,knj
+1+Q̃knj

,knj
−1 ∀Q ∈ R and the pressure

work term does not change. Thus in either case if we find flows and conductances on
the loop that decrease the dissipation on the loop (44) they will decrease the comple-
mentary dissipation (24) as well. Therefore if we show that Dloop strictly decreases
after adding a loop current (42), then the Kirchhoff flow on the new network will
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1526 SHYR-SHEA CHANG AND MARCUS ROPER

have lower complementary dissipation by the argument in section 6, a contradiction.
Calculate

(45) Dloop =
∑

(k,l)∈C

Q2
kl

κkl
=

∑
(k,l)∈C

Q
2
3

kld
2
3

kl

µ
=

(
∑

(k,l)∈C Q
2
3

kld
2
3

kl)
3

K2
loop

.

The derivative with respect to Q is (we let A =
∑

(k,l)∈C Q
2
3

kld
2
3

kl for simplicity of

notations)

(46)
dDloop

dQ
=

2A2

K2
loop

∑
(k,l)∈C

Q
− 1

3

kl d
2
3

kl.

Since Qkl are not all the same for (k, l) ∈ C we have A > 0 (and Kloop > 0 by

definition) and the factor 2A2

K2
loop

is always positive, so the sign of derivative depends

only on
∑

(k,l)∈C Q
− 1

3

kl d
2
3

kl in this case (we will discuss the case A = 0 later). Now we

show that Qkl = 0 for some (k, l) ∈ C is always a local minimum. Suppose Qkl = ε,

where ε → 0+. Then Q
− 1

3

kl → ∞ and we will have
dDloop
dQ > 0. The same argument

applies to Qkl = −ε so Qkl = 0 is indeed a local minimum. To show that global
minima can only happen when Qkl = 0 for some (k, l) ∈ C notice that there exists at
least one global minimum since Dloop → ∞ as Q → ±∞ and Dloop is a continuous

function of Q. This global minimum may be attained only where
dDloop
dQ = 0 or if the

derivative is not defined. For the derivative to be not defined we will have at least one
Qkl = 0, which corresponds to a local minimum with a cusp in Dloop as discussed.

Now suppose
dDloop
dQ = 0 so B

.
=
∑

(k,l)∈C Q
− 1

3

kl d
2
3

kl = 0 and Qkl 6= 0 ∀(k, l) ∈ C. Then
we can take the second derivative

(47)
d2Dloop

dQ2
=

8AB2

3K2
loop

− 2A2

3K2
loop

∑
(k,l)∈C

Q
− 4

3

kl d
2
3

kl < 0

since by assumption Qkl 6= 0 ∀(k, l) ∈ C. Thus the local extrema with Qkl 6=
0 ∀(k, l) ∈ C are all local maxima, and a global minimum will happen only if
∃(k, l) ∈ C s.t. Qkl = 0. Now we fix the conductances κkl ∀(k, l) ∈ C and the
original conductances outside the loop κ̃kl ∀(k, l), (l, k) /∈ C and change the flow to
Kirchhoff flow. If this is a physical network then as we have seen in section 6 this
process strictly decreases the complementary dissipation if the flow is not already
the Kirchhoff flow, and the proof finishes since the step of adding a loop current Q
strictly decreases the dissipation on the loop and thus the complementary dissipation
since a loop cannot be a global minimizer. It remains to show that the resulting
network is a physical network. Suppose for contradiction that after adding a loop
current Q we can produce a nonphysical connected subnetwork Gs of {κkl} by delet-
ing the zero flux edges (when (k, l) /∈ C let κkl = κ̃kl be the original conductance
since the procedure (42) does not change conductances outside of the loop). Simi-
larly to the proof in section 6 it suffices to show that the original flow {Q̃kl} satisfies∑
k∈Gs

∑
l : 〈k,l〉=1 Q̃kl =

∑
k∈Gs

∑
l : 〈k,l〉=1,l∈Gs

Q̃kl since the nonphysical network

assumption implies
∑
k∈Gs

∑
l : 〈k,l〉=1 Q̃kl =

∑
k∈F∩Gs

qk 6= 0, contradicting that∑
k∈Gs

∑
l : 〈k,l〉=1,l∈Gs

Q̃kl = 0 . To establish the equality we split the sum into

the parts k ∈ Gs\e and k ∈ Gs ∩ e, where e = {k1, . . . , kn} is the set of vertices
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in the loop. The equality
∑
k∈Gs\e

∑
l : 〈k,l〉=1 Q̃kl =

∑
k∈Gs\e

∑
l : 〈k,l〉=1,l∈Gs

Q̃kl
holds because for k ∈ Gs\e any edge connecting it does not lie in C, so 〈k, l〉 =
1, l /∈ Gs implies 0 = κkl = κ̃kl and Q̃kl = 0. When k ∈ Gs ∩ e we will have
to consider connected components of Gs ∩ e of {κkl} restricted in the loop C. Let
G1, . . . , Gm,m ≤ n be those connected components, i.e., if k ∈ Gi, l ∈ Gj , i 6= j
then there is no path k = l1, . . . , lh = l with (li, li+1) or (li+1, li) ∈ C, κlili+1

>

0 ∀1 ≤ i ≤ h − 1. Now consider a specific Gi and let k
(i)
1 , k

(i)
2 be its two end ver-

tices (the only two vertices that are connected to only one vertex in Gi by edges

in C) with l
(i)
1 , l

(i)
2 the neighboring vertices in the loop that are not in Gi, i.e.,

(k
(i)
1 , l

(i)
1 ), (l

(i)
2 , k

(i)
2 ) ∈ C, l(i)j /∈ Gi, j = 1, 2 (the order switching comes from the ori-

entation of the edges). Then
∑
k∈Gi

∑
l : 〈k,l〉=1 Q̃kl =

∑
k∈Gi

∑
l : 〈k,l〉=1,l∈Gs

Q̃kl +∑
j=1,2 Q̃k(i)j l

(i)
j

since again we do not have to consider flows on edges that are not in

the loop. Now the sum
∑
j=1,2 Q̃k(i)j l

(i)
j

= 0 because κ
k
(i)
j l

(i)
j

= 0, j = 1, 2 indicates that

Q̃
k
(i)
1 l

(i)
1

= −Q̃
k
(i)
2 l

(i)
2

since this is the only circumstance where an addition of a loop

current eliminates both edges (the minus sign again comes from the orientation of the
edges). Therefore

∑
k∈Gs∩e

∑
l : 〈k,l〉=1,l∈Gs

Q̃kl =
∑m
i=1

∑
k∈Gi

∑
l : 〈k,l〉=1,l∈Gs

Q̃kl =∑m
i=1

∑
k∈Gi

∑
l : 〈k,l〉=1 Q̃kl =

∑
k∈Gs∩e

∑
l : 〈k,l〉=1 Q̃kl and the nonphysical network

hypothesis leads to a contradiction.
Now we discuss the remaining case Q̃kl = Q0 ∈ R ∀(k, l) ∈ C. In this case we must

have Q0 = 0 since otherwise when Q0 > 0 we will have pk1 > pk2 > · · · > pkm > pk1 ,
a contradiction, and similarly for Q0 < 0. By assumption the network has at least
one edge that has flow in it and does not comprise the loop, i.e., there is an edge
kl such that (k, l), (l, k) /∈ C and Qkl 6= 0. Since the loop carries no flow we can
set κkl = 0 ∀(k, l) ∈ C without changing the complementary dissipation. To show
that adding these materials back to edges with flows in them strictly decreases the
complementary dissipation we prove a generalized Rayleigh’s principle that allows for
Dirichlet boundary conditions.

Lemma 13 (Rayleigh’s principle). The complementary dissipation (24) monoton-
ically decreases with the conductance of each edge, i.e., if we let {κ̃kl}, {Q̃kl} be the
sets of conductances and flows that satisfy all boundary conditions and {κkl}, {Qkl}
be another set of conductances with Qkl being the Kirchhoff flows, and they are on the
same network with the same boundary conditions then

κkl ≥ κ̃kl ∀〈k, l〉 = 1⇒
∑

k>l,〈k,l〉=1

Q2
kl

κkl
− 2

∑
k∈P

pk
∑

l : 〈k,l〉=1

Qkl

≤
∑

k>l,〈k,l〉=1

Q̃2
kl

κ̃kl
− 2

∑
k∈P

pk
∑

l : 〈k,l〉=1

Q̃kl.

(48)

Moreover, if κkl > κ̃kl on an edge with Q̃kl 6= 0, then the inequality holds.

Proof. To show the inequality we change the conductances and flows in two steps
(we can without loss of generality change Q̃kl to the Kirchhoff flows corresponding
to κ̃kl since from section 6 we know doing so reduces the complementary dissipa-
tion). First we change the set of conductances from {κ̃kl} to {κkl} and show that
the complementary dissipation with the non-Kirchhoff flows Q̃kl decreases. Then we
relax the flows to Kirchhoff flows Qkl, which we know decreases the complementary
dissipation from section 6. In the first step we can ignore the pressure work term
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1528 SHYR-SHEA CHANG AND MARCUS ROPER∑
k∈P pk

∑
l : 〈k,l〉=1 Q̃kl since the flows remain unchanged and the pressures are pre-

scribed. Then the fact κkl ≥ κ̃kl implies that
∑
k>l,〈k,l〉=1

Q̃2
kl

κkl
≤
∑
k>l,〈k,l〉=1

Q̃2
kl

κ̃kl
,

which finishes the proof. The strict inequality comes from
Q̃2

kl

κkl
<

Q̃2
kl

κ̃kl
if Q̃kl 6= 0 and

κkl > κ̃kl.

If we let {κ̃kl} be the set of original conductances but with κ̃kl = 0 ∀(k, l) ∈ C,

and {Q̃kl} be the set of the original flows, since
∑
k>l,〈k,l〉=1 κ̃

1
2

kldkl < K we can

find a new set of conductances {κkl} with κkl ≥ κ̃kl,
∑
k>l,〈k,l〉=1 κ

1
2

kldkl = K,κkl =

0 ∀(k, l) ∈ C, and ∃〈k, l〉 = 1 such that κkl > κ̃kl, Q̃kl 6= 0, then by Rayleigh’s
principle the complementary dissipation of {κkl}, {Qkl} will be strictly less than that
of {κ̃kl}, {Q̃kl} and the proof follows.

8. Proof for Theorem 7.

Proof. To prove that there is no path connecting 2 pressure vertices with the
same pressure suppose there is a path k1, . . . , kn with 〈kiki+1〉 = 1, κkiki+1

> 0 ∀i =
1, . . . , n−1, n ≥ 2, and k1, kn ∈ P with pk1 = pkn . As in section 7 we can redistribute
the conductances in the path to satisfy Murray’s law with the material in this path
held constant without increasing the complementary dissipation (24). Without loss
of generality we may assume that this path does not self-intersect because we can
otherwise extract a subpath that does not self-intersect. Since we will only adjust
flow and conductances on the path we can again restrict our attention to contribution
of this path to the complementary dissipation:

(49) fpath =
∑

(k,l)∈C

Q2
kl

κkl
− 2

∑
k∈Cp

pk
∑

l : 〈k,l〉=1,l∈Cn

Qkl.

Here as before we let C be the set of ordered pairs of edges in the path, i.e., C =
{(k1, k2), . . . , (kn−1, kn)}, and Cp be the set of all the pressure vertices in the path,
and Cn = {k1, . . . , kn}. Now we add in a path current Q that resembles the loop
current in section 7, i.e.,

(50) Qkl = Q̃kl +Q, κkl = µ
Q

4
3

kl

d
2
3

kl

∀(k, l) ∈ C,

where

(51) µ =
K2

path

(
∑

(k,l)∈C Q
2
3

kld
2
3

kl)
2
, Kpath

.
=

∑
(k,l)∈C

κ̃
1
2

kldkl,

and Q̃kl, κ̃kl denote the original flow and conductance, which according to Theo-
rem 5, are related via Murray’s law. We can see that if k ∈ Cp but k 6= k1, kn then∑
l : 〈k,l〉=1,l∈Cn

Qkl consists of 2 terms in which the path current Q cancels, so adding
path current does not affect the pressure work terms for these vertices. Similarly the
original flows are constants in the pressure work term and can be ignored if we only
wish to tease out the dependence of fpath. Thus up to an additive constant,

(52) fpath =
∑

(k,l)∈C

Q2
kl

κkl
− 2(pk1 − pkn)Q =

∑
(k,l)∈C

Q2
kl

κkl
= Dpath,

D
ow

nl
oa

de
d 

07
/1

2/
18

 to
 1

28
.9

7.
24

4.
22

4.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

MINIMAL TRANSPORT NETWORKS 1529

where the sign comes from our convention that the path current flows out of k1 but
flows into kn. Thus the complementary dissipation reduces to dissipation on the path
in this case. Also notice that adding a path current will not affect the conservation of
mass and flow boundary conditions since it adds no flow to k2, . . . , kn−1 and k1, kn are
pressure vertices and do not have prescribed inflow, so if the procedure (50) strictly
reduces the dissipation on the loop fpath we can relax the flows to Kirchhoff flows
without increasing the complementary dissipation, which leads to a contradiction.
Since Dpath has the same form as Dloop in section 7 we can prove in the same way
that if Qkl are not all the same for (k, l) ∈ C the global minimum only happens when
Qkl = 0 for some (k, l) ∈ C, which leads to a contradiction, and ifQkl = Q0 ∀(k, l) ∈ C
we must have Q0 = 0 or we will have pk1 6= pkn , a contradiction. In this case by
assumption we have an edge kl with (k, l), (l, k) /∈ C and Qkl 6= 0. Then similarly to
section 7 we can remove the materials on the path C and apply Rayleigh’s principle
to decrease the complementary dissipation, which finishes the argument. One last
issue needed to be addressed is whether cutting this path will result in a nonphysical
network. As in section 7 we can define connected segments in the path after the path
is cut and suppose for contradiction that there is a subnetwork connected to multiple
connected segments. If this segment contains k1 or kn then there is at least one
pressure vertex and this subnetwork is physical. Otherwise this subnetwork connects
to only connected segments in the middle which have the same original flows into and
out of them, and we have 0 =

∑
k∈Gs

∑
l : 〈k,l〉=1,l∈Gs

Q̃kl =
∑
k∈Gs

∑
l : 〈k,l〉=1 Q̃kl 6=

0, where Gs is the nonphysical subnetwork after cutting the path, a contradiction.

9. Proof for Proposition 9.

Proof. Suppose we start with a physical network that globally minimizes the
dissipation (23) under the material constraint (25) with n

.
= |P| ≥ 2 (otherwise there

is nothing to prove). Since the number of paths connecting two different pressure
vertices is finite we can assume that there is a finite number of paths linking pressure
vertices. On any path we can decrease the dissipation restricted on the path by adding
a path current and adjust the conductances according to Murray’s law as in section 8
in the case that not all the flows (with sign determined by the path direction) are the
same, and by simply reducing all the flows to zero if they all agree and eliminating
the whole path while scaling up the rest of the network by a multiplicative constant
to meet the material constraint (25), given that this path does not comprise all the
network. This procedure strictly reduces the dissipation since in the case not all the
flows on the path are the same we will cut a proper set of them as in section 8, which
strictly decreases the dissipation. In case where all the flows are the same on the path
because |F| 6= φ and a flow vertex cannot lie on this path (otherwise the flows will not
all be the same) so there will always be an edge not in this path with nonzero flow.
Thus we can eliminate each path one at a time, strictly decreasing the dissipation
while still satisfying the conservation of mass and flow boundary conditions and also
the network remaining physical so long as we are not taking out the last path, in which
case we have to worry about this path comprising the whole network. Up to now we
do not solve for the flows according to Kirchhoff’s laws since this might not decrease
dissipation (it is only guaranteed to decrease the complementary dissipation). Notice
that while we might take out multiple paths at a time in the case of several paths
sharing common links, the number of paths will never increase since no new edge with
positive conductance can be created in this process. If we never reach the situation
where we need to take out the last path, which is possible because eliminating one
path may also disconnect others, then we do not have to worry about the path we are
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1530 SHYR-SHEA CHANG AND MARCUS ROPER

taking out might comprise the whole network (since there are other distinct paths),
and we reach a network with connected components G1, . . . , Gm with m ≥ n since
each component can contain at most one pressure vertex. Then the complementary
dissipation function becomes

(53) f =
∑

k>l,〈k,l〉=1

Q2
kl

κkl
− 2

n∑
k=1

pk
∑

l : 〈k,l〉=1

Qkl

if we without loss of generality let k = 1, . . . , n be the pressure vertices in G1, . . . , Gn,
respectively. Since Qkl = 0 when k ∈ Gi, l ∈ Gj when i 6= j we can isolate the
contribution of a component Gi to the complementary dissipation, starting from

0 =
∑

k,l∈Gi,〈k,l〉=1

(pk − pl)κkl =
∑
k∈Gi

 ∑
l∈Gi : 〈k,l〉=1

Qkl


=
∑
k∈Gi

 ∑
l : 〈k,l〉=1

Qkl

 =
∑

l : 〈i,l〉=1

Qil +
∑

k∈Gi∩F

qk.

(54)

Thus

(55) f =
∑

k>l,〈k,l〉=1

Q2
kl

κkl
+ 2

n∑
i=1

pi
∑

k∈Gi∩F

qk = D + C,

where C is constant for any flow field Qkl that satisfies conservation of mass, the pre-
scribed flow boundary condition, and Qkl = 0 whenever κkl = 0, which is necessary
for f < ∞ thus necessary for Qkl being a global minimizer of f when the κkl’s are
fixed. So, if Qkl is not already the Kirchhoff flow and we change the current Qkl’s
to the Kirchhoff flow (the network is physical according to the same argument in
section 8) then we will decrease the complementary dissipation, which is now equiv-
alent to decreasing dissipation. Thus flow adjusting gives us a network with strictly
smaller dissipation, contradicting our assumption that we were starting with a global
minimizer.

To complete our proof we must consider the case that we do need to disconnect
the last path and this last path has constant flow on it. This path cannot comprise the
whole network because if it were to comprise the entire network from the assumption
F 6= φ we must have ki ∈ F for 1 < i < N , where N denotes the number of vertices
in this path (that is, all the path vertices between i = 1 and i = N , exclusively, are
flow vertices) and there is at least one such interior vertex, or there is an isolated
k ∈ F that does not connect to any other vertex, which cannot be true for a physical
network. Then

∑
l : 〈ki,l〉=1Qkil = 0, a contradiction to the fact that ki is a flow vertex.

Thus we can disconnect the last path in any case and the argument goes through as
before to a contradiction.

10. Proof for Proposition 11.

Proof. The material-invariance property of a minimally dissipative network under
material constraint (25) means that all the global minimizers will have the same
dissipation if their materials are scaled to be the same. To see this suppose {κkl}, {κ′kl}
are minimally dissipative networks with material K,K ′. Consider the network {βκkl}
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with β = (K
′

K )2, so that {βκkl} has material K ′. Then since {κ′kl} is a minimally
dissipative network with material K ′ we have

(56)
D

β

.
=

∑
k>l,〈k,l〉=1

Q2
kl

βκkl
≥

∑
k>l,〈k,l〉=1

Q
′2
kl

κ′kl
= D′.

Similarly if we define β′ = ( KK′ )
2 = 1

β we have

(57)
D′

β′
≥ D ⇒ D′ =

D

β

and the networks {κkl}, {κ′kl} have the same dissipation if their materials are scaled
to be the same. This implies that if {κ̂kl} is a minimally dissipative network with
material K = 1, then {βκ̂kl} is a minimally dissipative network of any K > 0 with
β = K2. While {κ̂kl} is not unique since all the minimally dissipative networks
with K = 1 have the same dissipation it does not matter which network we use. Now
consider a minimally dissipative network {κkl} with material penalty under coefficient
a (26). Suppose this network has material K. The network must be a minimally
dissipative network with material constraint K. If it were not also the minimally
dissipative network, then the minimally dissipative network would have a smaller
value of Θ in (26). Thus we can assume κkl = βκ̂kl, where β = K2. A concern is that
global minimizers of (26) under the same coefficient a may have different amounts of
material. However since they all have the form {βκ̂kl} for some unit network {κ̂kl}
we can calculate

(58) Θ =
∑

k>l,〈k,l〉=1

Q̂2
kl

βκ̂kl
+ a

∑
k>l,〈k,l〉=1

β
1
2 κ̂

1
2

kldkl =
D̂

β
+ aβ

1
2 .

If {βκ̂kl} is truly a global minimizer the derivative must vanish since Θ → ∞ as
β → 0+,∞, i.e.,

(59) 0 =
dΘ

dβ
= − D̂

β2
+
a

2
β−

1
2 ⇒ β =

(
2D̂

a

) 2
3

.

Since β = K2, where K is the material of the network {βκ̂kl}, we have

(60) K =

(
2D̂

a

) 1
3

and, in particular, all networks must have the same value of K. This bijection K(a)
between material constraint and coefficient of material penalty shows that the two
different formulations are equivalent for minimally dissipative network under the
material-invariance assumption.

11. Discussion. To summarize our mathematical results, we gave a rigorous
proof that Murray’s law is a necessary condition for global minimization of comple-
mentary dissipation (24), and showed that it is also necessary for minimally dissipative
networks when a flow vertex is present. We proved that under general boundary con-
ditions a global minimizer of complementary dissipation has no loops and does not
connect pressure vertices with the same specified pressure. When a flow vertex is
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present these results recover Durand’s previous proof for the no-loop property of min-
imally dissipative networks. Finally we proved that imposing material as a constraint
or penalty is equivalent for minimally dissipative networks but is not the case in gen-
eral. We prove previous results on minimally dissipative networks with mathematical
rigor, and extend them to general boundary conditions as well as showing the proper
generalization of Rayleigh’s and Thomson’s hundred year old theorems to include
boundary pressures.

Murray’s law has shaped understanding of biological transport networks includ-
ing animals and plants [17, 12]. However, the derivation of Murray’s law has until
now been heuristic, ignoring both the coupling between flows and conductances (i.e.,
assuming flows remain constant while conductances are optimized), and the potential
for different boundary conditions on the network [13, 6]. Our work establishes Mur-
ray’s law as a necessary condition for networks globally minimizing a complementary
dissipation function (24), and for minimal dissipative networks under both Neumann
and Dirichlet boundary conditions. As subsidiary steps we reformulated Thomson’s
principle and Rayleigh’s principle for networks with Dirichlet boundary conditions.

Minimally dissipative networks with flow boundary conditions have been studied
both theoretically and numerically [4, 6, 8]. However the effect of pressure boundary
conditions upon network structure seems to have received little scrutiny. Imposing
pressure rather than flow boundary conditions can be convenient when dealing with
complex networks in which only a small part of the entire network may be mapped,
for example, in high resolution cerebrovascular imaging, which is currently being used
to understand the connection between brain function and vascular development or
damage [3]. It may be appropriate to apply a pressure boundary condition at the
vertices making up the periphery of the mapped network. Here monotonicity and
boundedness results derived from our extension of Rayleigh’s theorem can provide
useful estimation tools, and insight into the effect, for example, of adding additional
pressure vertices to a cardiovascular network.

Our work is also among the first to elucidate differences between imposing the to-
tal material as a constraint or penalty on minimally dissipative networks. Historically
Murray derived his law based on a material penalty formulation [13], but later work
treated material as a constraint [4, 8, 6]. Our results show that for minimally dissipa-
tive networks these formulations are equivalent, and so recent results are consistent
with Murray’s original derivation. However the equivalence of the two formulations
hinges on two key results: 1. That flows in physical networks minimize complemen-
tary dissipation, which is equivalent in tree networks to minimizing dissipation. 2.
Optimal networks are trees. However, these two results cannot be appealed to when
optimizing other functions on networks. Indeed for general target functions and con-
straints the formulation one chooses has fundamental effects on the optimal network;
as we demonstrated when we optimize flow uniformity, optimal networks may only
exist for one formulation and not for the other. Moreover the optimal network may
also vary quantitatively as a function of the total allowed material, and possibly with
the coefficient of material penalty. Our previous work on optimizing flow uniformity
showed evidence of phase transitions as penalty coefficients varied (in preparation).
For general functions and constraint one needs to pick and analyze the physics and
biology carefully to find the appropriate formulation.

Minimal dissipation arguments give theoretical insights into biological networks
[13], but are not universal explanatory tools. It has been shown that the leaf vascu-
lar network and slime mold network are adapted for robustness [8, 19] whereas some
fungal networks are adapted to maximize mixing [16]. Moreover even when we seek
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to minimize dissipation, our function f may be non-Newtonian. For example, the
effective viscosity of blood changes with the cell concentration and with vessel radius
[14], and it is possible that Murray’s law has to be modified in this occasion. The
techniques we present in this paper might be generalized to establish the modified
Murray’s law as a necessary condition for the minimal dissipative networks. Our
previous work on zebrafish embryo showed that the uniformity of blood flow is main-
tained at the cost of dissipation [5]. While numerical algorithms have been designed
for finding optimal networks other than minimal dissipation [8], to our best knowl-
edge there is no theoretical result on the morphology of optimal networks under other
functions with either material constraint or penalty. Critically the results presented
here draw extensively on monotonicity and boundedness results that cannot be read-
ily generalized to the general case. New methodology is needed to deduce theoretical
results for general functions.

Appendix A. Well-posedness of Kirchhoff’s laws. For completeness we
give a proof on well-posedness of Kirchhoff’s laws. If the network has several connected
components we can prove that each component has a unique Kirchhoff flow so without
loss of generality we can consider a connected network G, i.e., ∀k, l ∈ G ∃k1, . . . , kn
s.t. 〈ki, ki+1〉 = 1, κkiki+1

> 0 ∀i = 1, . . . , n− 1 and k1 = k, kn = l, where κkl denotes
the conductance of the link kl. Now we write down the Kirchhoff system

(61) Dp = b,

where

(62) Dkl
.
=


∑
l,〈k,l〉=1 κkl, k = l, k /∈ P,

−κkl, 〈k, l〉 = 1, k /∈ P,
1, k = l, k ∈ P,
0, otherwise,

and

(63) bk =

 qk, k ∈ F ,
p̄k, k ∈ P,
0, otherwise,

Here the notations follow those in section 3. First we show that if P 6= φ then D is
invertible, which is equivalent to showing that

(64) Dp = 0⇒ p = 0.

The solution p for (64) corresponds to a network where we do not have any flows into
the system except possibly at vertices with pressure boundary conditions prescribed
zero pressures, denoted by P. The goal is to show that pk = 0 ∀k. Suppose, for
contradiction, that ∃i /∈ P s.t. pi 6= 0 (since we already have pj = 0 ∀j ∈ P). Then
we would have Qkl 6= 0 for some 〈k, l〉 = 1 since the network is connected, and without
loss of generality let Qkl > 0. Now we can trace this flow throughout the network in
the following procedure:

1. Given that Qkn−1kn > 0, first check if kn ∈ P, and stop if this is the case.
2. Consider all vertices l s.t. 〈kn, l〉 = 1. According to Kirchhoff’s first law there

must be an l s.t. Qknl > 0. Since the network is finite we can pick, e.g., the
smallest l satisfying these conditions and let kn+1 = l.

3. Repeat the procedure until kN ∈ P for some N and stop.
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If we start with k1 = k, k2 = l we can initiate the process since the first condition
is satisfied. This procedure has to stop eventually because the network is finite and
that k1, . . . , kn are all distinct for any given n > 1. To see this, suppose kn = km
with m > n. Then we would have pn > pn+1 > · · · > pm = pn, a contradiction. Thus
we would end up with a chain of distinct vertices k1, k2, . . . , kN with 〈kn, kn+1〉 =
1, Qknkn+1

> 0 ∀n = 1, . . . , N − 1, and N ∈ P. Now we repeat the same procedure
just with k′1 = l, k′2 = k to trace the flows upstream, and we would end up with
another chain k′1, k

′
2, . . . , k

′
N ′ with 〈k′n, k′n+1〉 = 1, Qk′nk′n+1

< 0 ∀n = 1, . . . , N ′ − 1,

and N ′ ∈ P. Notice that there is no repetition in the set {k1, . . . , kN , k′1, . . . , k′N ′}
since kn = k′m would lead to the same contradiction due to loop flow. Now we have
a loop flow starting and ending at vertices in P, a contradiction since all vertices in
P have pressure zero. Therefore we have pk = 0 ∀1 ≤ k ≤ M and D is invertible.
Now suppose P = φ but

∑
k∈F qk = 0. We want to show that solutions p exist and

are determined up to an additive constant, so the flows Qkl are uniquely determined.
Notice that if we replace say the last row of D by eV then D is invertible by the
previous argument, so rank(D) ≥ V − 1. Also notice that

∑
kDkl = 0 ∀1 ≤ l ≤ V ,

so rank(D) = V − 1. Now without loss of generality let vertex 1 ∈ F and we want
to find a solution (if F = φ then p = (0, . . . , 0)T is a solution). If we change the first
row of D to e1 it is equivalent to setting 1 ∈ P with p̄1 = q1, which admits a unique
solution p′k by our previous argument. Now calculate

0 =
∑
〈k,l〉=1

(p′k − p′l)κkl =
∑
k

∑
l : 〈k,l〉=1

Q′kl =
∑

l : 〈1,l〉=1

Q′1l +
∑

k∈F,k 6=1

qk(65)

⇒
∑

l : 〈1,l〉=1

Q′1l = q1(66)

so p′k is a solution to the original linear system. By
∑
kDkl = 0 ∀1 ≤ l ≤ V and

rank(D) = V − 1 we know that the null space of D is {(a, . . . , a)T |a ∈ R}, so the
general solution is

(67) pk = p′k + a ∀1 ≤ k ≤ V

for every a ∈ R. Thus p is determined up to a constant and the flow is uniquely
determined.

Finally we show that there is no solution of p when
∑
k∈F qk 6= 0. This is straight-

forward since suppose for contradiction that ∃p ∈ RV s.t.

(68) Dp = b.

Then if we multiply both side from the left by (1, . . . , 1) then since (1, . . . , 1)D = 0
we get

(69) 0 =
∑
k∈F

qk,

a contradiction.
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